Stanford Algebraic Geometry — Seminar — LINEAR SYSTEMS OF PLANE CURVES WITH BASE POINTS OF BOUNDED MULTIPLICITY

نویسنده

  • STEPHANIE YANG
چکیده

We address the problem of computing the dimension of the space of plane curves of fixed degree and general multiple base points. A conjecture of Harbourne and Hirschowitz gives geometric meaning to when this dimension is larger than the expected dimension obtained from Riemann-Roch; specifically, the dimension is larger than expected if and only if the system has a multiple (−1)-curve in its base locus. We discuss different approaches for attacking this conjecture, and show that it holds for all systems with base points of multiplicity 7 or less. Friday, March 4 3:30 p.m., after the kiddie colloquium (Note unusual time!) Room 383-N http://math.stanford.edu/~vakil/s0405/

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coamoebas of Complex Algebraic Plane Curves and the Logarithmic Gauss Map

The coamoeba of any complex algebraic plane curve V is its image in the real torus under the argument map. The area counted with multiplicity of the coamoeba of any algebraic curve in (C∗)2 is bounded in terms of the degree of the curve. We show in this Note that up to multiplication by a constant in (C∗)2, the complex algebraic plane curves whose coamoebas are of maximal area (counted with mul...

متن کامل

Linear Systems in P2 with Base Points of Bounded Multiplicity

We present a proof of the Harbourne-Hirschowitz conjecture for linear systems with multiple points of order 7 or less. This uses a well-known degeneration of the plane developed by Ciliberto and Miranda as well as a combinatorial game that arises from specializing points onto lines.

متن کامل

Linear Systems of Plane Curves with Base Points of Equal Multiplicity

In this article we address the problem of computing the dimension of the space of plane curves of degree d with n general points of multiplicity m. A conjecture of Harbourne and Hirschowitz implies that when d ≥ 3m, the dimension is equal to the expected dimension given by the Riemann-Roch Theorem. Also, systems for which the dimension is larger than expected should have a fixed part containing...

متن کامل

Emptiness of Homogeneous Linear Systems with Ten General Base Points

In this paper we give a new proof of the fact that for all pairs of positive integers (d, m) with d/m < 117/37, the linear system of plane curves of degree d with ten general base points of multiplicity m is empty.

متن کامل

Mt822: Introduction to Algebraic Geometry

1. Algebraic varieties 2 1.1. Affine varieties 2 1.2. Projective varieties 2 1.3. Zariski topology 3 1.4. Algebraic geometry and analytic geometry 3 1.5. Singular varieties 3 1.6. Ideals 4 1.7. Regular functions and maps 5 2. Sheaves and cohomology 6 2.1. The Mittag-Leffler problem 7 2.2. Sheaves 7 2.3. Maps of sheaves 8 2.4. Stalks and germs 10 2.5. Cohomology of sheaves 11 3. Vector bundles, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005